
QBXFMI

AdLib(tm) and SoundBlaster(tm)

Resident FM Music Driver Interface Library

for

QuickBASIC 4.x and BASIC 7.x

by

Cornel Huth

5-May-1991

QBXFMI is an AdLib(tm)/SoundBlaster(tm) compatible resident FM
music sound driver interface module for Microsoft QuickBASIC 4.x
and BASIC 7.x compilers. Its purpose is to provide access to the
resident sound driver for my QBXSBC SoundBlaster/AdLib music card
software library but it can also be used separately.

Features of QBXFMI are:

1) Linkable module for stand-alone or environment (QLB) use.
2) Written in QuickBASIC.
3) Complete interface to all the resident driver functions.

This software package is copyrighted material. You may use it for
non-commercial work only. If you are going to be using QBXFMI
commercially, or in any work that is to be distributed in any
manner, you must register by purchasing a license for the QBXSBC
package.

QBXSBC, the package $19.95
- includes single-user licenses for:
1) QBXIOL, fast I/O DOS file module
2) QBXCTV, digitized voice I/O module for SoundBlaster
3) QBXFMI, interface module to the resident FM driver for
the SoundBlaster and AdLib music cards. Includes QBXFMI.BAS
and resident driver SB-SOUND.COM for the SoundBlaster.
- also includes:
4) Useful sample programs in QB demonstrating how to access
AdLib instrument BNK files, voice files, and card detection.
5) Programmer documentation

QBXSBC, assembly source $29.95
- includes:
1) QBXIOL.ASM, MASM 5.1 compatible source
2) QBXCTV.ASM, MASM 5.1 compatible source
3) Additional programmer documentation

To order see the ORDER.FRM file.

2

LICENSE AGREEMENT - REGISTERED VERSIONS ONLY

This is a legal agreement between you, the end user, and Cornel
Huth. By using this software, you are agreeing to be bound by the
terms of this agreement.

SOFTWARE LICENSE

1. GRANT OF LICENSE. Cornel Huth grants to you the right to use
one copy of the SOFTWARE on a single terminal connected to a
single computer (i.e., with a single CPU). You may not network
the SOFTWARE or otherwise use it on more than one computer or
computer terminal at a time.

2. COPYRIGHT. The SOFTWARE is owned by Cornel Huth and is pro-
tected by United States copyright laws and international treaty
provisions. Therefore, you must treat the SOFTWARE like any other
copyrighted material (e.g., a book or musical recording) except
that you may either (a) make one copy of the SOFTWARE solely for
backup or archival purposes, or (b) transfer the SOFTWARE to a
single hard disk provided you keep the original solely for backup
or archival purposes. You may make a single copy of this document
for your own use only.

3. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE,
but you may transfer the software and accompanying documentation
on a permanent basis provided you retain no copies and the
recipient agrees to the terms of this Agreement. You may not
reverse engineer, decompile, or disassemble the software. If the
SOFTWARE is an update, any transfer must include the most recent
update and all previous versions.

NO WARRANTIES. Cornel Huth disclaims all warranties, either
expressed or implied, including but not limited to implied
warranties of merchantability and fitness for a particular
purpose, with respect to the SOFTWARE and the documentation.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. In no event shall Cornel
Huth be liable for any damages whatsoever arising out of use of
or inability to use this SOFTWARE.

U.S. GOVERNMENT RESTRICTED RIGHTS

The SOFTWARE and documentation are provided with RESTRICTED
RIGHTS. Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause at
52.227-7013. Contractor/manufacturer is Cornel Huth/6402 Ingram
Rd/San Antonio, TX 78238.(512)684-8065.

This agreement is governed by the laws of the state of Texas.

3

SOUND DRIVER DESCRIPTION

The sound driver SB-SOUND.COM is a resident program (TSR) that
uses about 6K of code space (13K for the SOUND.COM AdLib driver)
and an event queue of from 1-64K. Its purpose is to provide a
consistent interface to the music synth card across multiple
computer languages. Communication to the driver is through a
software interrupt call (INT 65h).

Features of the driver are:

1) Event-driven queue for each voice. Basically, what you do
is develop a piece of music and write it to the event queue.
Notes, volumes, timbre (ADSR) info, timings (when a
particular part of your piece is to be played or altered),
tempo, all sorts of information, can be put in the queue.
When you're done, just tell it to start and away it goes.
All processing is done in the background, meaning that you
can have your program do something else while the driver
PLAYS the piece.

2) Variable buffer space. When you load the driver you can
specify the size of the event queue buffer with a /Bxx
command line parameter.

C>SB-SOUND /B64

Will set aside 64K of RAM for the event queue. To uninstall
the driver, use /U. To change the port assignment use /Pxxx.
The default buffer space is 4K (valid range is 1-64K) and
the default (base) port is 220h. The AdLib SOUND.COM driver
is similar but cannot be uninstalled. Also, while you can
use the SOUND.COM driver with the SoundBlaster, you cannot
use the SB-SOUND.COM driver with an AdLib.

4

FUNCTION LIST

FUNCTION FMInit(Version)
SUB FMSetRelTimeStart(TimeNum,TimeDen)
SUB FMSetState(State)
SUB FMGetState(State)
SUB FMFlush()
SUB FMSetMode(Mode)
SUB FMGetMode(Mode)
FUNCTION FMSetRelVolume(VolNum,VolDen,TimeNum,TimeDen)
FUNCTION FMSetTempo(Tempo,TimeNum, TimeDen)
SUB FMSetKBXpose(Transpose)
SUB FMGetKBXpose(Transpose)
SUB FMSetActVoice(Voice)
SUB FMGetActVoice(Voice)
FUNCTION FMPlayNoteDelay(Pitch,LenNum,LenDen,DelNum,DelDen)
FUNCTION FMPlayNote(Pitch,LenNum,LenDen)
FUNCTION FMSetVoiceTimbre(VTDseg,VTDoff,TimeNum,TimeDen)
FUNCTION FMSetPitchBend(DeltaNum,DeltaDen,TimeNum,TimeDen)
SUB FMSetTickBeat(TickBeat)
SUB FMNoteOn(Voice,Pitch)
SUB FMNoteOff(Voice)
SUB FMSetDirectTimbre(Voice,VTDseg,VTDoff)
SUB FMSetPitchBendRange(Range)
SUB FMSetWaveformParm(OnOff)
FUNCTION FMdriver(Func)
FUNCTION FMdetect(Port)

5

FMInit

Type FUNCTION - INTEGER

Arguments Version - INTEGER (returned)

Syntax stat=FMinit(Version)

Use Return the software version of the resident sound
driver, if installed.

Example 1 stat = FMinit(Version)
IF stat THEN PRINT "DRIVER NOT INSTALLED"

Rules none

Notes Version 1.51 will be returned as 151 in Version.

Return 0 okay
1 resident sound driver not installed

6

FMSetRelTimeStart

Type SUB

Arguments TimeNum - INTEGER (0-65535)
TimeDen - INTEGER (1-65535)

Syntax SetRelTimeStart TimeNum,TimeDen

Use Set the time origin for all future timing
references.

Example 1 For example, TimeNum=0 and TimeDen=1 will set the
time origin at the absolute beginning. Then, if
you were to FMSetRelVolume(1,2,5,1), the relative
volume of the then active voice would play at 100%
volume for beats 1-4 and then decrease 50% for the
5th and following beats.

Example 2 Let's say that instead of TimeNum=0 and TimeDen=1
you used TimeNum=10 and TimeDen=1. Then, if you
were to FMSetRelVolume(1,2,5,1), the relative
volume of the then active voice would not be
affected. This is because you set the time origin
to a point in time after the 5,1 time of the
volume change.

Rules TimeNum can be 0 to 65535, TimeDen 1 to 65535.

Notes The is a feature of the sound driver, not the
music card itself. Try using different settings to
get a feel in how to use the timing features.
TimeNum/TimeDen are numerator/denominator.

Return none

7

FMSetState

Type SUB

Arguments State - INTEGER (0-1)

Sytax FMSetState State

Use Start, stop, or suspend sound driver output.

Example 1 FMSetState 0 'driver off
LoadMusicScore 'go get score, timings, etc

StuffQueue 'give it to the driver
FMSetState 1 'tell driver to play

Rules none

Notes You do not need to stop the driver to store data
to it. However, when just starting, it is best to
get the driver PRIMED a bit by having a few
seconds or so of data in it so things flow
smoothly.

Return none

8

FMGetState

Type SUB

Arguments State - INTEGER (returned)

Sytax FMGetState State

Use Determine if the driver is still playing.

Example 1 FMSetState 0 'driver off
LoadMusicScore 'go get score, timings, etc
StuffQueue 'give it to the driver
FMSetState 1 'tell driver to play
DO 'wait until it's done

FMGetState State
LOOP WHILE State

Rules none

Notes State is 1 while music is still playing, 0 if the
music is finished or stopped with FMSetState 0.

Return none

9

FMFlush

Type SUB

Arguments none

Syntax FMFlush

Use Silence all voices and empty all event queues.

Example 1 PRINT "Press a key to end song and start next"
DO:LOOP WHILE INKEY$ = ""
FMFlush
StartNextSong

Rules none

Notes This function could be considered a warm-start
while FMInit() could be considered a cold-start.

Return none

10

FMSetMode

Type SUB

Arguments Mode - INTEGER (0-1)

Syntax FMSetMode Mode

Use Set the music card to Percussion or Melodic mode.
Also sets all relative volumes to 100%, all voices
to piano timbre, and pitch to normal (0 or middle
C).

Example 1 FMSetMode 1 'set to percussion mode

Rules none

Notes In percussion mode (mode=1) voices 0 to 10 are
available. In melodic (mode=0), 0 to 8.

Return none

11

FMGetMode

This function is not curently implemented by either SOUND.COM or
SB-SOUND.COM.

12

FMSetRelVolume

Type FUNCTION - INTEGER

Arguments VolNum - INTEGER (0-255)
VolDen - INTEGER (1-255)
TimeNum - INTEGER (0-65535)
TimeDen - INTEGER (1-65535)

Syntax stat=FMSetRelVolume(VolNum,VolDen,TimeNum,TimeDen)

Use Change the relative volume of the active voice at
the given time. VolNum/VolDen must be less than or
equal to 1 (where 1 is 100% volume).

Example 1 FMSetRelTimeStart 0,1
FMSetActVoice 0
'set relative volume of voice 0 to 50%
stat = FMSetRelVolume(10,20,0,1)
'rising 5% after every beat
stat = FMSetRelVolume(11,20,1,1)
stat = FMSetRelVolume(12,20,2,1)
'and so on until beat 10, 100%
stat = FMSetRelVolume(20,20,10,1)
'do some other stuffing and then start
FMSetState 1

Rules Affects relative volume of the active voice only.

Notes none

Return 0 okay
2 queue buffer full

13

FMSetTempo

Type FUNCTION - INTEGER

Arguments Tempo - INTEGER (0-65535)
TimeNum - INTEGER (0-65535)
TimeDen - INTEGER (1-65535)

Syntax stat=FMSetTempo(Tempo,TimeNum,TimeDen)

Use Change the tempo to Tempo at the given time.

Example 1 FMSetRelTimeStart 0,1
'start tempo at 80 beats/min
stat=FMSetTempo 80,0,1
'change to double-time at 10th beat
stat=FMSetTempo 120,10,1

Rules See FMSetTickBeat()

Notes none

Return 0 okay
2 queue buffer full

14

FMSetKBXpose

Type SUB

Arguments Transpose - INTEGER (-96-96 max)

Syntax FMSetKNXpose Transpose

Use Slide, or transpose, all notes up or down the
keyboard Transpose number of semitones. Since
notes can range from -48 to +47, a max Transpose
range of plus/minus 96 is in order.

Example 1 'play a middle-C whole note
FMPlayNote 0,4,1
'wait 'til it's done then
'play C an octave down
FMSetKBXpose -12
'gin and tonic, thank you
FMPlayNote 0,4,1

Rules See FMSetTickBeat()

Notes This function does not work in SB-SOUND.COM. It
does with SOUND.COM.

Return 0 okay
2 queue buffer full

15

FMGetKBXpose

Type SUB

Arguments Transpose - INTEGER (returned)

Syntax FMGetKBXpose Transpose

Use Get the current transpose value.

Example 1 'play a middle-C whole note
FMPlayNote 0,4,1
'wait 'til it's done then
'play C an octave down
FMSetKBXpose -12
'gin and tonic, thank you
FMPlayNote 0,4,1
CALL OtherModule
END

'where other module can determine transpose
'OTHER MODULE CODE:
FMGetKBXpose Transpose

Rules See FMSetTickBeat()

Notes This function is not documented by AdLib.

Return none

16

FMSetActVoice

Type SUB

Arguments Voice - INTEGER (0-8 or 0-10)

Syntax FMSetActVoice Voice

Use Set the active voice for all future sound driver
commands that act on a specific voice. In melodic
mode, voices 0 to 8 are available. In percussion
mode, voices 0 to 10.

Example 1 'tell driver we are sending commands for voice 0
FMSetActVoice 0
'send some stuff for voice 0
stat=FMSetVoiceTimbre(vseg,voff,1,0)
'and so on

Rules none

Notes The sound driver assembles everything in its
buffer by voice and by time. Rather than send all
voice 0 info and possibly overflowing the buffer
(it defaults to 4K, max=64K), send enough of each
voice to be used so that you can FMSetState 1 to a
smooth start. Thereafter, you can periodically
refresh the buffer. The driver dynamically
allocates available buffer space. This means that
each voice is not assigned a certain percentage of
the buffer but rather that each voice uses as much
as it requires. This is why you should avoid
stuffing an entire voice at a time (unless you
know that you'll have the buffer space).

Return none

17

FMGetActVoice

Type SUB

Arguments Voice - INTEGER (returned)

Syntax FMSetGetVoice Voice

Use Get the active voice.

Example 1 FMGetActVoice Voice

Rules none

Notes This function is not documented by AdLib.

Return none

18

FMPlayNoteDelay

Type FUNCTION - INTEGER

Arguments Pitch - INTEGER (-48-47)
LengthNum - INTEGER (0-65535)

LengthDen - INTEGER (1-255)
DelayNum - INTEGER (0-65535)
DelayDen - INTEGER (1-255)

Syntax stat=FMPlayNoteDelay(Pitch,LengthNum,LengthDen,_
DelayNum,DelayDen)

Use Play the note of Pitch of LengthNum/LengthDen and
set the delay until the next note is played to
DelayNum/DelayDen. This note will play after the
previous note's delay is over.

Example 1 'play C whole note, rest half
FMPlayNote 0,4,1,2,1

Rules none

Notes none

Return 0 okay
2 queue buffer full

19

FMPlayNote

Type FUNCTION - INTEGER

Arguments Pitch - INTEGER (-48-47)
LengthNum - INTEGER (0-65535)
LengthDen - INTEGER (1-255)

Syntax stat=FMPlayNote(Pitch,LengthNum,LengthDen)

Use Play the note of Pitch of LengthNum/LengthDen and
set the delay also to LengthNum/LengthDen.

Example 1 'play C whole note, rest whole
FMPlayNote 0,4,1

Rules none

Notes none

Return 0 okay
2 queue buffer full

20

FMSetVoiceTimbre

Type FUNCTION - INTEGER

Arguments vseg - INTEGER (VARSEG)
voff - INTEGER (VARPTR)
TimeNum - INTEGER (0-65535)
TimeDen - INTEGER (1-65535)

Syntax stat=FMSetVoiceTimbre(vseg,voff,TimeNum,TimeDen)

Use Change the timbre (qualities) of the active voice
at time TimeNum/TimeDen.

Example 1 'set voice 0 to bongo at time 0
FMSetActVoice 0
vseg=VARSEG(bongo(0)):voff=VARPTR(bongo(0))
stat=FMSetVoiceTimbre(vseg,voff,0,1)

Rules vseg:voff must point to an integer data array. In
other words, each voice attribute is to be 2 bytes
(eventhough in BNK files they are 1 byte). The
vseg:voff data must remain valid until the data is
actually sent to the hardware, which will be at
TimeNum/TimeDen. Thereafter, you can dispose of
it.

Notes See QBXFMI.BAS for an example of using this
function. FM sound is created by the interaction
of two operators on the hardware. The timbre data
programs these operators. In all melodic voices
and percussion voice 6, the sound generated is
from the interaction of the modulator operator and
the carrier operator. In the other percussion
voices (7-10) only the modulator operator has an
affect on the sound. See QBXFMI.BAS for the format
of the timbre data.

Return 0 okay
2 queue buffer full

21

FMSetPitchBend

Type FUNCTION - INTEGER

Arguments DeltaNum - INTEGER (-100-100)
DeltaDen - INTEGER (1-100)
TimeNum - INTEGER (0-65535)
TimeDen - INTEGER (1-65535)

Syntax stat=FMSetPitchBend(100,1,10,1)

Use Change the pitch at TimeNum/TimeDen by
DeltaNum/DeltaDen where DeltaNum/DeltaDen is from
-1 to +1 semitones.

Example 1 'change the pitch just a bit (for perfect pitch)
stat=FMSetPitchBend(1,100,0,1)
'this changes the pitch up 1/100th a semitone, a
'very small change indeed

Rules none

Notes See FMSetPitchBendRange()

Return none

22

FMSetTickBeat

Type SUB

Arguments TickBeat - INTEGER (0-65535)

Syntax FMSetTickBeat

Use Sets the computer's timer interrupt to allow more
or less interrupts per unit time.

Example 1 FMSetTickBeat 64

Rules All notes for all voices should be multiples of
1/TickBeat. This formula should also remain valid:

18.2 <= (TickBeat * Tempo/60)

Notes The interrupts/sec=max(60,TickBeat)*Tempo/60

Return none

23

FMNoteOn

Type SUB

Arguments Voice - INTEGER (0-8 or 0-10)
Pitch - INTEGER (-48-47)

Syntax FMNoteOn(Voice,Pitch)

Use Directly play the note Pitch using Voice. This
bypasses the event queue, playing immediately and
continuously until FMNoteOff().

Example 1 'play C voice 0
FMNoteOn 0,0

Rules none

Notes none

Return none

24

FMNoteOff

Type SUB

Arguments Voice - INTEGER (0-8 or 0-10)

Syntax FMNoteOff(Voice)

Use Turn off the note that was played by FMNoteOn().

Example 1 'play C voice 0 and wait for a keypress
FMNoteOn 0,0
SLEEP
FMNoteOff 0

Rules none

Notes none

Return none

25

FMSetDirectTimbre

Type SUB

Arguments Voice - INTEGER (0-8 or 0-10)
vseg - INTEGER (VARSEG)
voff - INTEGER (VARPTR)

Syntax stat=FMSetDirectTimbre(Voice,vseg,voff)

Use Directly set the timbre (qualities) of Voice. This
bypasses the event queue, changing the timbre
immediately.

Example 1 vseg=VARSEG(bongo(0)):voff=VARPTR(bongo(0))
stat=FMSetDirectTimbre(0,vseg,voff)
FMNoteOn 0,0
SLEEP 1
FMNoteOff 0

Rules vseg:voff must point to an integer data array. In
other words, each voice attribute is to be 2 bytes
(eventhough in BNK files they are 1 byte). The
vseg:voff data need not remain valid after the

call.

Notes No timings are handled by this function. It plays
when you call it unlike FMPlayNote which plays at
the time you specifiy.

Return none

26

FMSetPitchBendRange

Type SUB

Arguments Range - INTEGER (1-12)

Syntax FMSetPitchBendRange(Range)

Use Alter the pitch-change step of FMSetPitchBend().
FMInit() sets the default pitch change of
FMSetPitchBend() to 1 semitone. This function
changes that default from 1 to 12 semitones.

Example 1 'change the pitch just a bit (for perfect pitch)
stat=FMSetPitchBend(1,100,0,1)
'this changes the pitch up 1/100th a semitone, a
'very small change indeed
FMSetPitchBendRange 12

stat = FMSetPitchBend(1,100,0,1)
'now this changes the pitch up 1/100th an octave

Rules Driver versions 1.3+ only. Version 1.3 has been
available since November 1988.

Notes See FMSetPitchBend()

Return none

27

FMSetWaveformParm

Type SUB

Arguments State - INTEGER (0-1)

Syntax FMSetWaveformParm(State)

Use Tells the driver that there are waveform
parameters in the timbre data. When State=1
FMSetVoiceTimbre() and FMSetDirectTimbre() expect
an array of 28 integers where the last two are the

waveform operators. State=0 tells it to expect
only 26 (having 28 will not affect it, the
waveform parms simply won't be used).

Example 1 'tell it we have WF parms
FMSetWaveformParm 1
vseg=VARSEG(bongo(0)):voff=VARPTR(bongo(0))
stat=FMSetDirectTimbre(0,vseg,voff)
FMNoteOn 0,0
SLEEP 1
FMNoteOff 0

Rules none

Notes FMInit() sets this to 0. To enable it, call this
function after FMInit().

Return none

28

NOTE DATA

Notes are made up of 3 components: pitch, duration, and delay.
PITCH

261.63Hz
C -48 -36 -24 -12 *0* 12 24 36

C# 1 -277.18
D 2 -293.66
D# 3 -311.13
E 4 -329.63
F 5 -349.23
F# 6 -369.99
G 7 -391.99
G# 8 -415.31
A 9 -440.00
A# 10-466.16
B -37 -25 -13 -1 11 23 35 47

493.88Hz

The 0 represents the note of middle C on the piano keyboard and
is equal to 261.63Hz. Columns to the right of 0 are an octave
above middle C, to the left, an octave below. To calculate the
frequency of a note, use the frequencies listed by each note and
double it for each octave above or halve it for each below. The
lowest frequency is 16.352Hz (pitch=-48), the highest is 3951.1
Hz (pitch=47), not including harmonics.

DURATION

The length of a note is given as a numerator over denominator.
The effective duration of a note is a function of the tempo.

Name Num / Den
Whole note 4 1
Dotted half 3 1
Half note 2 1
Dotted quarter 3 2
Quarter note 1 1
Dotted eighth 3 4
Eighth note 1 2
Dotted sixteenth 3 8
Sixteenth 1 4

DELAY

Delay is the time after the current note starts playing that the
next should be started. Usually, delay equals note duration so
that the next note plays immediately after the current note ends.
If there is a further delay, that delay is called at rest. Rests
can also be 'played' alone by specifying a note of duration 0
with the required delay.

29

TIMBRE DATA

The timbre data is used to program each of the two operators (18
total) that are used to create FM sound. In melodic voices 0 to
8, there are two operators used together to create a sound. In
percussion voices 7-10, 1 operator is used to create the sound.
You can select from two modes: melodic only or melodic-
percussive. In melodic only you have voices 0-8 available. In
melodic-percussive, voice 0-5 are melodic, percussion voice 6
(Bass Drum using 2 operators), percussion 7,8,9,10 are the Snare,
TomTom, Cymbal, and Hi-Hat, respectively (each using 1 operator).

The timbre data parameters are made up of components: envelope
parms, oscillator parms, and level controller parms. Each of the
two operators have 13 parms (0-12) plus each has an additional
waveform parameter.

ENVELOPE

ADSR - Attack Rate, Decay Rate, Sustain Level, Release Rate.
These parms tell how quickly a sound starts (attack rate), how
quickly it falls (decay rate) to the sustain level (sustain
level) and, once the note has been released, how quickly it
decays to zero-level (release rate).

AR 0-15 (0=slow attack) (Timbre parm 3)
DR 0-15 (0=slow decay) (6)
SL 0-15 (0=maximum sustain level) (4)
RR 0-15 (0=slow release) (7)

Other envelope parms are Sustaining Sound and Envelope Scaling.
Sustaining sound directs whether the sustain level will be held
or if the release should begin immediately after reaching the
sustain level. Envelope Scaling tries to adjust the envelope
parameters to more accurately mimic musical instruments.

SS 0-1 (1=on,0=off) (5)
ES 0-1 (1=on,0=off) (11)

OSCILLATOR

Frequency Multiplier, Frequency Vibrato, Modulation Feedback. The
frequency multiplier lets you modify the oscillator frequency so
that a sound becomes a multiple of the original note, or
harmonic.

MULTI (1) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
factor .5 1 2 3 4 5 6 7 8 9 10 10 12 12 15

30

Frequency vibrato creates an automatic variation to the
oscillator's frequency (very slight). Also called Pitch Vibrato.

VIB 0-1 (1=7 cents frequency fluctuation depth,0=none) (10)
(there are 1200 cents in an octave)

Modulation feedback sets the modulator's oscillator to feedback
its output back to its input. (Not used by the carrier op.)

FB (2) 0 1 2 3 4 5 6 7
modulation 0 p/16 p/8 p/4 p/2 p 2p 4p
(p=PIE)

LEVEL

Output Level, Level Scaling, Amplitude Vibrato. These adjust the
overall output of each operator.

Output level adjusts the operator's maximum output. The modulator
output level determines the intensity of the modulation if the
carrier and the carrier output level determines the overall
volume of the sound.

OL 0-63 (0=max,63=min) (8)
(to convert to dB: dB=OL*.75)

Level scaling, or Key Scale Level, adjusts the output level of
higher notes so that they play less loud than lower notes.

KSL (0) 0 1 2 3
dB/octave 0 3 1.5 6
drop

Amplitude vibrato creates an automatic variation to the operators
output level. Also called tremolo.

AM 0-1 (1=1dB depth of fluctuation,0=none) (9)

Another parameter is the Frequency Modulation/Additive flag.
Valid only for the modulator operator, is changes the way the
sound is created.

FM 0-1 (0=use FM,1=use additive synthesis) (12)

31

